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Learning Templates for Artistic Portrait
Lighting Analysis

Xiaowu Chen, Xin Jin, Hongyu Wu, and Qinping Zhao

Abstract—Lighting is a key factor in creating impressive
artistic portraits. In this paper, we propose to analyse portrait
lighting by learning templates of lighting styles. Inspired by
the experience of artists, we first define several novel features
which describe the local contrasts in various face regions.The
most informative features are then selected with a stepwise
feature pursuit algorithm to derive the templates of various
lighting styles. After that, the matching scores which measure
the similarity between a testing portrait and those templates
are calculated for lighting style classification. Furthermore, we
train a regression model by the subjective scores and the feature
responses of a template to predict the score of a portrait
lighting quality. Based on the templates, a novel Face Illumination
Descriptor (FID) is defined to measure the difference between
two portrait lightings. Experimental results show that the learned
templates can well describe the lighting styles, while the proposed
approach can assess the lighting quality of artistic portraits as
human being does.

Index Terms—Portrait Lighting Analysis, Contrast Feature,
Template Learning, Lighting Style Classification, Quantitative
Assessment, Face Illumination Matching.

I. I NTRODUCTION

Lighting is one of the most important factors of portrait.
Artists usually use professional lighting equipment in produc-
ing artistic portraits. An ingenious lighting can highlight the
shape of face and make the portraits more impressive and
interesting. In many applications such as image searching and
face illumination transfer [1, 2, 3], it is of significance that the
portraits can be searched by lighting, or lighting quality can
be automatically assessed.

Several algorithms related to lighting analysis are proposed.
Environmental irradiance is estimated from images [4, 5, 6, 7].
Portrait lighting is the product of lighting and facial geometry.
It is impractical to analyze portrait lighting from environmental
irradiance since recovering the facial geometry from images
is a difficult task. Various features are designed for the visual
aesthetic quality assessment [8, 9, 10]. Those features are
efficient for aesthetic quality analysis, but are not designed
for portrait lighting.

On the other hand, artists have rich experience in analyzing
portrait lighting. They often check the lighting effects inlocal
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Fig. 1. The face regions definition. (a) The artists’ common practice to analyze
portrait lighting quality. The face is coarsely divided into regions [11]. (b)
Inspired by the artists, we divide the face into16 rectangular parts.

face regions to analyze portrait lighting. They firstly divide the
face coarsely into3×5 regions (Fig.1 (a)). Then, the shadow
and non-shadow areas in those regions, with their relative
locations, area ratios, etc. are used to assess the lightingquality
or classify the lighting styles: TheRembrandtstyle is featured
by a triangular highlight region below one of the eyes. The
Paramountstyle has a butterfly shape for the shadow between
the nose and the mouth. TheLoop style is named after the
loop-shaped shadow below the nose. TheSplit style has half
of the face in the shadow [11, 12, 13, 14].

According to the artists’ experience, we propose to analyze
the portrait lighting from the lighting effect in the local face
region. The local lighting contrast features are inspired by
the Haar-like features [15, 16, 17] used in face recognition.
We divide the frontal face into16 rectangular regions (Fig.
1 (b)). For each region, we define a set of local lighting
contrast features with the help of artists. In order to obtain
more local lighting contrast information, the local lighting
contrast types are performed on various image channels using
various image statistics. The templates (Fig.2) are learned
by selecting the most informative features using a stepwise
feature pursuit algorithm [18]. The information gain of each
feature is calculated by a log-linear model.

The templates are further used to analyze portrait lighting.
For classification, we calculate the matching score between
a testing portrait and a lighting template. If the matching
score is greater than a threshold, the testing portrait photo
is classified to that lighting style. For quantitative assessment,
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Fig. 2. The templates of four lighting styles. The left showspart of the
training portraits. The right is the learned templates of each lighting style.

we first select a fixed number of portraits with lighting quality
scores graded by artists and feature responses of a template. A
regression model is then trained by the lighting quality score
and the feature responses of a template to predict the lighting
quality of a testing portrait. For face illumination matching,
we select the local lighting contrast features which can well
describe the local contrast to form the FID for measuring the
lighting difference between two portraits.

The contributions of this paper include: (1) learning artis-
tic lighting templates for artistic portraits through a setof
local lighting contrast features, (2) portrait lighting analysis
including lighting style classification and quantitative lighting
assessment using learned artistic lighting templates, andface
illumination matching using local lighting contrast features.

The remainder of this paper is organized as follows: we
describe related work in SectionII . The design of lighting
contrast features is described in SectionIII . The learning of
lighting templates is described in SectionIV. We analyze
portrait lighting in SectionV. The experimental results are
shown and discussed in SectionVI. Finally, we conclude our
paper with discussions in SectionVII .

II. RELATED WORK

In this paper, we focus on artistic portrait lighting analysis
including lighting style classification and quantitative assess-
ment. Roughly, the methods related to our topic can be divided
into two aspects: image-based lighting analysis and photo
aesthetic assessment.

A. Image-based Lighting Analysis

Lalonde et al. [4] estimated outdoor illumination from only
a single outdoor image. They used a dataset of 6 million
images to train the illumination inference model, and estimate
a sun and sky dome model that is especially for outdoor
images. The three most evident appearance cues (i.e. the
sky, shadows on the ground and the varied intensities of the
vertical surfaces to estimate the direction of light) are directly
employed to estimate the illumination in a scene.

Xing et al.[19] estimated the dynamic outdoor illumination
of an video sequence. The vertical and horizontal plans in
the video are interactively selected to recover the sun and
sky light in real time. Chen et al. [20] used the known scene
geometry and shading information to estimate the illumination.
A sparse set of 3D surfaces is selected by normal and semantic
constraints. The coarse shading image of those 3D surfaces,
together with the 3D surfaces, are used for illumination
estimation.

Panagopoulos et al. [21] jointly recovered the illumina-
tion environment and estimate the cast shadows in a scene
from a single image. A higher-order Markov Random Field
(MRF) illumination model was used, which combines low-
level shadow evidence with high-level prior knowledge for the
joint estimation of cast shadows and illumination environment.

Zhu et al. [22] recognized shadows of monochromatic
natural images. Both shadow-variant and shadow-invariant
cues from illumination, textural and odd order derivative are
used to train a classifier from a decision tree, and are integrated
into a conditional random Field. Shadowed areas of an image
can be identified using proposed monochromatic cues.

Johnson et al. [5] used both model-independent methods
(cast-shadow analysis, occluding-contour analysis) and model-
based methods (physical models of the eyes etc.) to infer the
lighting direction. A Bayesian evidence integration scheme
was used for the two disparate sources of information.

Nishino et al. [6, 23] estimated the lighting condition from
eyes. The eye was treated as a natural light probe, and an
environment map of the scene was computed from the image.
The tasks such as inserting virtual objects into an image, face
relighting, lighting robust face recognition benefits fromthe
environment map from the eye.

Spherical harmonics [24] provided a way to approximate the
environment map by spherical harmonic basis functions. Wen
et al. [7] used a linear combination of spherical harmonic basis
to approximate the environment map for any given image of
a face, and Bitouk et al. [25] used the spherical harmonics
approximation to adjust lighting for face image swapping.
Han et al. [26] used spherical harmonics lighting model for
improved face recognition performance.

Those works focus on environmental irradiance estimation,
are not suitable for our task. We analyse the portrait lighting
from the local contrast feature of 2D images to avoid environ-
mental irradiance and facial geometry estimation from images.

B. Photo Aesthetic Assessment

Luo el al. [8] collected 17, 613 photos with manually
labelled ground truth. They divided the photos into seven
categories based on the photo contents, and developed a set
of subject area extraction methods and visual features, which
are specially designed for different categories. Which greatly
improves photo quality assessment performance.

Another line of research in the field of aesthetic quality
assessment is by using generic features. Marchesotti et al.[9]
proposed to use generic image descriptors to assess aesthetic
quality of a photo. The generic image descriptors which
aggregate the statistics computed from low-level local features,
implicitly encode the photo aesthetic properties.
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Fig. 3. Local lighting contrast type design with the help of artists. We first collect a dataset of artist lighting portraits. Then, the portraits are divided into
local patches (the patches of faces are regularized to square). Finally, the local patches are classified by artists and the lighting contrast types are derived from
the local patches.

Khan et al. [10] developed a small set of classification
features to evaluate the visual aesthetic in photographic por-
traitures. They proposed features for spatial compositionand
highlight and shadow composition. Their lighting features
are computed in the global face, or cannot well describe
the complex artistic lighting effectsand find informative local
lighting patterns in portraits .

Those features are efficient in aesthetic quality analysis,but
are not designed for portrait lighting. This paper proposesa
set of local contrast features specifically for portrait lighting.

III. L OCAL L IGHTING CONTRAST FEATURES

The local lighting contrast features are designed to capture
the local lighting contrast characteristics. Each featureFk

includes 4 dimensions:Fk : {E,H,C, S}, whereE,H,C, S

are defined as:
Rectangular regionE on the image lattice. As shown in

Fig. 1, we divide the area of a frontal face into16 rectangular
parts: nose, left eye, right eye, left eyebrow, right eyebrow,
mouth, region between mouth and nose, forehead, left up
cheek, right up cheek, left down cheek, right down cheek,
region left to left eye, region right to right eye, and chin.

Local contrast type H . In our previous work [27], we
adopted3 local lighting contrast types to approximate some
local lighting patterns of relative brightness and darkness. In
order to describe the local lighting contrast more precisely, we
define a new set of local lighting contrast types with the help
of artists.

Fig. 3 shows the design of local lighting contrast types. We
collected 350 example portraits with artistic lighting styles
(Fig. 3 (a)). We first divided all the 350 example portraits of
our database into local patches, and the local patches with no
obvious shadow or highlight were deleted (Fig.3 (b)). Then,
artists were invited to classify the local patches according to
the local lighting effect, and divide the local patches into11
kinds. For each kind of local patch, the artists designed a
contrast type to represent the lighting contrast property (Fig.
3 (c)). In order to cover more local lighting effect, the first 5
contrast types were extended to 15 contrast types by moving
the split line. Finally, we got21 local contrast types which

have the most potential to be selected as the representative
local lighting patterns of artistic portrait lighting (Fig. 3 (d)).

According to the local lighting contrast type, the rectangular
region is divided into two subregionsA and B (black and
white areas). In SectionVI , we will show that the21 local
contrast types outperform the3 ones in portrait lighting
analysis.

Target channel C of the image. Our 8 adopted channels
include the graylevel, the3 channelsL, a and b in the
CIE 1976 (L∗, a∗, b∗) color space (L differs slightly from
graylevel although the 2 channels are heavily correlated ),
and the hue and saturation channels in the HSV color space.
In order to capture the effect of staggered highlight under
sidelight, we also involve the channel of gradients in the
graylevel channel, as well as an edge channel including all
edge pixels generated by a Canny edge detector using OpenCV
library with default parameters. (Canny et al. [28], OpenCV
is the Open Source Computer Vision library, opencv.org).

Target statisticS of the image. We use3 types of statistics:
mean valueµ, histogramh, and densityρ (proportion of edge
pixels) which is specially designed for the edge channel.

The feature response of local contrast featurek between the
two sub-regionsA andB of imageI on channelC is defined
as

rk(I) =







|µA − µB| if S is mean
JS(hA||hB) if S is histogram
|ρA − ρB| if S is density,C is edge,

(1)

where, JS(·||·) denotes the discrete Jensen-Shannon diver-
gence [29].

IV. L EARNING ARTISTIC L IGHTING TEMPLATES

The lighting template consists of a set of local lighting con-
trast features. We learn a template for one lighting style using
a stepwise feature pursuit algorithm. The learning algorithm
is built on a log-linear model of the probability distributions
of the lighting style, with the feature responses as factors.

Observing that the rectangular regions have no or very little
overlap with each other, we assume independence of features
in different rectangular regions and model the distributions of
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Fig. 4. Information gain of a feature. For featureFk in the candidate feature
set, its responsesRP

k
andRN

k
are calculated for all images inΩP andΩN ,

and two histogramsh(RP

k
) andh(RN

k
) are obtained for the positive examples

and negative examples, respectively. The KL divergence between the two
histograms approximates the information gain ofFk on our dataset.

portrait images of the same artistic style in a generative log-
linear form. With the set of portrait imagesΩP with a lighting
style P (positive examples), and against the portrait images
ΩN with other lighting styles (negative examples, including
the portrait images with no lighting effect on their faces ),we
are able to pursue the most representative features with their
weight parameters. We would like to build a lighting template
for ΩP againstΩN , as well as a probability distribution
upon this template. The template is a group of features
characterizing the portrait lighting styleP .

In this work,ΩP can include all the portraits with artistic
lighting styles, whileΩP contain the portraits without obvious
artistic lighting styles. A common template for all the artistic
lighting styles can be learned.ΩP can also include a subset of
artistic lighting styles, such asRembrandt, Paramount, Loop,
and Split. The template is specific for that artistic lighting
style. For example, whenΩP includes theRembrandtlighting
style,ΩN includes all the other styles (Paramount, Loop, Split)
and daily photos. Then, the learned template is specific for
Rembrandt.

Suppose the template is composed of a set of features
{F1, · · · , FK}, a probabilistic model for each imageI ∈ ΩP

can be defined in a log-linear form [30, 18]

p(I) = q(I)

K
∏

k=1

1

zk
exp{λkrk(I)} , (2)

where,q(I) is the null distribution ofI without any knowledge
of the feature responsesrk, λk is the weight parameter, and
zk is normalizing constant for the factors. In our case, we use
the template to describe the new information of photographsin
ΩP compared with that inΩN , and leave the rest information
in q(I). In this way,q(I) models the negative samples.

We select an informative subset of the features for the
template, rather than using the whole feature set, for two
reasons: (1) features tend to be correlated, and (2) we prefer
a simple template for both capability of generalization and
computational efficiency. Since selecting an optimal subset
of features simultaneously is a non-trivial task, we adopt a

stepwise feature pursuit algorithm [31, 18] to select one feature
at each step to constructp(I).

Algorithm 1 Stepwise pursuit for lighting contrast features
Input:

ΩP , positive samples;ΩN , negative samples;
FC : {F1, · · · , FL}, candidate feature set;

Output:
T : the learned lighting template;

Compute feature responses and information gain:
1: for each feature inFC do
2: Compute its feature response on each image inΩP

andΩN by 1;
3: Compute itsλ and log z by 4;
4: end for

Pursuit lighting contrast features:
1: Let lighting templateT ← φ , t← 1
2: while t < Thresht do
3: Select the max-gain featureF(t) according to3;
4: T ← F(t), t← t+ 1;
5: DeleteF(t) and features in the same region ofF(t)

from FC ;
6: end while
7: return T ;

Given a candidate feature set, we begin with an empty
template corresponding to the negative examples distribution
p0(I) = q(I) at step0. Then at each stept, we choose the
max-gain feature

F(t) = argmax
Fk

KL(pt(rk(I))||pt−1(rk(I)))

≈ argmax
Fk

KL(pt(rk(I))||q(rk(I)))

≈ argmax
Fk

KL(h(RP
k )||h(R

N
k )).

(3)

On our dataset,KL(·||·) is the Kullback-Leibler diver-
gence, andh(·) denotes the histograms over a set of local
lighting contrast feature responses,RP

k and RN
k denote the

responses of lighting contrast featurek of positive and neg-
ative samples respectively (Fig.4). The second approxima-
tion argmaxFk

KL(pt(rk(I))||q(rk(I))) applies empirical es-
timates of marginal probabilities with instances in the dataset.
For the first approximation, where we assumept−1(rk(I)) ≈
q(rk(I)), to be feasible, we apply local inhibition in the
template learning process to reduce the correlations among
the selected features in the pursuit steps. Noticing the fact
that the rectangular regions have no or very little overlap with
each other, we simply assume independence of features in
different rectangular regions, and use the inhibition strategy
that selects only one feature from each rectangular part of the
face. Meanwhile, for stept, the parametersλ(t) and z(t) can
be computed by solving the system

Eq

[

1

z(t)
exp{λ(t)r(t)(I)}r(t)(I)

]

= Ept
[r(t)(I)]

z(t) = Eq[exp{λ(t)r(t)(I)}]

, (4)

with Eq[·] ≈ MeanΩN
(·) andEpt

[·] ≈ MeanΩP
(·) as empiri-

cal estimates according to our dataset. Algorithm1 describes



IEEE TRANSACTIONS ON IMAGE PROCESSING-SUBMISSION, NOVEMBER 2014 5

Information gain

high low

A
rt

is
ti

c 
P

o
rt

ra
it

s
R

em
b

ra
n

d
t

P
ar

am
o

u
n

t

L
o
o
p

S
p

li
t

L
ef

t 
R

em
b
ra

n
d

t

R
ig

h
t 

R
em

b
ra

n
d

t

L
ef

t 
L

o
o
p

R
ig

h
t 

L
o

o
p

L
ef

t 
S

p
li

t

R
ig

h
t 

S
p

it

Fig. 5. The learned artistic lighting templates. The first row is the common template of the whole artistic lighting styleand the template ofParamountstyle.
Paramountstyle has no sub-classes according to key lighting directions. The second to the fourth rows show the learned templates for the other three typical
artistic lighting styles. In each row, from the left to the right are the common template of this style, the samples of thisstyle, and the two templates of the
two sub-classes. All templates are shown with ranks marked by colored boundaries corresponding to the legend.
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the stepwise pursuit algorithm for lighting contrast features.
In order to keep the independence between the local contrast
features of the template, we find a most informative feature for
every face region, so that theThresht is equal to the amount
of face region.

Fig. 5 displays the learned lighting templates (For clarity,
the top8 local contrast features of the template are shown).
More discriminative local contrast types are selected than
just left-vs-right, top-vs-bottom, and center-vs-periphery in
[27]. For example, the triangle contrast type learned in the
Right Rembrandtstyle captures the triangle light well. The
Paramounttemplate has the top triangle contrast type between
the nose and the mouth. This is the most informative feature
the Paramountstyle has.

The results show that the left and the right templates of
each style are not strictly symmetrical. For example the left-
split template is not a mirrored version of right-split template.
Because the training images of the left and the right sub-
classes are not symmetrical due to the asymmetries of human
faces and the key light direction. Besides, individual differ-
ences and artistic creations of different artists also generate
the non-symmetrical sub-classes.

The learned templates correspond to the studio lighting
well. Most of the selected features are of the generalized
left-vs-right spatial type, which matches the common lighting
strategies for portrait photography in studios as photographers
usually change the directions of light in the horizontal dimen-
sion. The parts for the nose and the area between the mouth
and the nose are the top significant areas, which make sense
because these two parts are relatively complex in geometry
and have various appearances under different illumination
conditions. It is worth noticing that all the color featuresare
ignored by the template learning process. Our dataset contain
only 63 monochrome portraits, and the monochrome portraits
make up only a small proportion (850 portraits). This proves
that color is not a distinctive lighting contrast feature.

V. PORTRAIT L IGHTING ANALYSIS

With the learned templates of the artistic lighting styles,
we make analysis portrait lighting in this section, including
lighting styles classification, quantitative assessment,and face
illumination matching.

A. Classification

The templateTA for artistic lighting styleA is learned by
all the portraits with artistic lighting styleA against portraits
with other lighting style. It can be used for lighting style
classification. Given an input portrait photoI, we can calculate
a template matching score withTA by

MatchingScore(I) = log
p(I)

q(I)

=

K
∑

k=1

(λkrk(I)− log zk).

(5)

Artistic Lighting

Rembrandt Paramount Loop Split

Left Right Left Right Left Right

Fig. 6. Weakly supervised clustering. All the artistic lighting styles are
divided into four typical artistic lighting styles. We makeweakly supervised
clustering within each style. Each style ofRembrandt, Loop andSplit can be
automatically divided into two sub-classes: Left and Right. The paramount
has no such sub-classes because the key lighting direction is always above its
subject.

This follows a probability ratio test formulation. If the
matching score is greater than a learned threshold correspond-
ing to a certain significance level (e.g., the equal error rate
(EER) threshold), the test photo is classified as lighting style
P ; otherwise, it is classified as other lighting style.

The template learned by portraits with artistic lighting
against that without artistic lighting can be used to classify
a test portrait as artist lighting or not. We can also learn the
template by the portraits with one lighting style against the
portraits with other lighting styles and the portraits without
artistic lighting. The template learned for each lighting style
can be used to classify a test portrait as that lighting styleor
not.

We focus on 4 popular artistic lighting styles:paramount,
Rembrandt, Loop andSplit. We invite the artists to divide the
portraits with artist lighting in our dataset into those 4 styles.

Our dataset contains between-class and within-class vari-
ations. The within-class variation is mainly caused by the
key lighting direction in each artistic lighting style. We make
weakly supervised clustering [32] and the cluster adopted in
our paper is APCluster [33], and the face illumination distance
is defined in SectionV. We empirically set the preference
parameter of APCluster as 4 in our experiments.

We learn two artistic lighting templates per style to account
for more within-class variation through weakly supervised
clustering. Each style ofRembrandt, Loop and Split can be
divided into two sub-classes: Left and Right, which means
the key light comes from left and right respectively. The
paramounthas no such sub-classes because the key light-
ing direction is always above the subject. Then we obtain
3 × 2 + 1 = 7 templates for3 × 2 + 1 = 7 styles (Fig.6).
After that we make one-to-all classification in our experiments
as what we have done in our multi-style classification. Fig.9
(the third row) shows that the classification performance is
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(a) (b) (c)

Fig. 7. Definition of FID. (a) The portrait photo with facial landmarks, (b)
The facial mask according to (a), (c) The 16 selected contrast types.

improved by the weakly supervised clustering.

B. Quantitative Assessment

In addition to classification, it is usually more useful to have
a reasonable quantitative assessment of a portrait lighting us-
age. This can be achieved by extending our learning algorithm
to a regression framework.

In an empirical manner, we define the lighting quality of a
portrait photographI as the probabilityp that it is better than
another randomly chosen portrait photographJ, namely,

p = Ef(J) [1(I wins againstJ)] , (6)

where,f is the distribution of all portrait images, and1(·) is
the indicator function. To predict the scorep, we randomly
choose a fixed numbern of photographs to compare withI,
then winning number ofI should follow a binomial distri-
bution binom(n, p). We do such comparison experiments on
example portraits and obtain their scores. We can then estimate
the effects of the features on the score using logistic regression
[34] by fitting the model

log
p

1− p
=

K
∑

k=1

(λkrk(I)− log zk)

= λ0 +
K
∑

k=1

λkrk(I),

(7)

and this model is able to output a scorep ∈ (0, 1) for the
quality of test photographs.

C. Face Illumination Matching

In order to quantify the illumination difference between
two portrait images, we define a newFace Illumination
Descriptor (FID) based on the local lighting contrast features.
We extend the rectangle region to non-regular region with a
mask of each parts such as forehead, nose, eyebrows, mouths,
etc. (Fig.7 (b)). In our previous work [2], the FID contains
only 3 contrast types (left-vs-right, top-vs-bottom, and center-
vs-periphery). In this paper, we use the more informative and
a new set of lighting contrast features.

In the templates learning process, we accumulate the KL
divergence betweenh(Rk(P )) andh(Rk(N)) for every local
contrast type, target channel and target statistics. 5 contrast
types with nearly zero accumulated KL divergence are ignored,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 8. Classification accuracy with the number of local contrast features.
The accuracy of the classification of all the artistic lighting styles is tested
using the local contrast features designed in this paper.

and 16 contrast types are selected (Fig.7 (c)). TheL channel
and the mean statistic have the highest accumulated KL
divergence, meaning that the selected 16 contrast types,L

channel and mean statistic can describe the characteristics of
lighting contrast .

According to the 16 selected local contrast types, the non-
regular region is divided into two non-regular subregionsA∗

andB∗. In order to model the lighting direction, we do not
use the absolute value of the difference,

r∗(I) = µA∗ − µB∗ . (8)

The FID of portrait photoI is defined as a set of the local
contrast feature responsesr∗i (I) between the two subregions
of the 16 non-regular regions onL channel using the mean
statistic, which is a16× 16 d vector.

Face Illumination Distance. We define the illumination
distance between two portrait imagesI1 andI2 by FID as

D(I1, I2) =
√

Σ256
i=1(r

∗

i (I1)− r∗i (I2))
2. (9)

As an application of our lighting contrast features and
the FID , we use the face illumination distance to match the
portrait with the most similar illumination effects as those of
the query one.

VI. EXPERIMENTS

We validate our template and lighting contrast features in
the aspect of classification, quantitative assessment and face
illumination matching. To the best of our knowledge, there are
no open data sets for our experiment. Therefore, we set up our
own dataset. We collect350 example portraits with artistic
lighting styles from 3 sources: (1) masterpieces of portrait
photography from famous photographers (e.g., Yousuf Karsh,
Arnold Newman), (2) collections from professional photog-
raphy websites (e.g., photo.net, portrait-photos.org), and (3)
scanned copies from professional portrait photography books
focusing on lighting [11, 12, 13, 14].

The 500 portraits with no obvious lighting effect for com-
parison are obtained from two main sources ( Most of them
are daily portraits ): (1) popular photo hosting websites (e.g.,
flickr.com), and (2) image search engines’ results for the
keywords “face” and “daily life” (e.g., images.google.com).
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Fig. 9. In the first and third rows, we show the average accuracy rates and ROC curves of 5 times 5 folds cross validation (one-to-all classification).
The 3 candidatesand 21 candidatesmean the classification results using 3 basic contrast typesof [27] and the proposed 21 new contrast types. The3
candidates+clusteringand21 candidates+clusteringmean the classification results after weakly supervised clustering, which are all higher than those without
clustering. All the highest accuracy rates are in21 candidates+clustering. In the second and fourth rows, we show the ROC curves of 5 times 5 folds cross
validation in the classification of artistic lighting, compared with the methods in Marchesotti et al. [9], Khan et al. [10], Luo et al. human [8] (human face
combined features) and Luo et al. [8] (all features).
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We try to randomize irrelevant factors by spanning over
various poses, ethnic groups, etc. All images in our dataset
are aligned using AAM [35] to a standard frontal face before
running our other tasks. Due to the shadow effects, the AAM
sometimes cannot get the accurate position of facial feature
points and some manual corrections are thus needed. The face
image with inaccurate feature points can be detected by [36]
in the future work.

The lighting template consists of lighting contrast features.
Fig. 8 shows the lighting classification accuracy with different
Thresht. The classification accuracy can reach84.0% with
only one lighting contrast feature, demonstrating good corre-
spondence between our template and the experience of artists,
who usually judge the lighting style by a small number of face
regions.

Which shows that our template corresponds to the artist
experience well: the artists usually judge the lighting style by
small number of face regions.

A. Classification Results

Fig. 9 shows our classification performance. We compare
the performance of using candidate features with 3 basic
contrast types (left-vs-right, top-vs-bottom, and center-vs-
periphery) in [27] and with 21 contrast types designed in
this work. As shown by the ROC curves in the first row
of Fig. 9, the performance with 21 contrast types is better
than that with the 3 basic contrast types. Using the weakly
supervised clustering, we obtain3 × 2 + 1 = 7 templates
for 3 × 2 + 1 = 7 styles (Left Rembrandt, Right Rembrandt,
Paramount, Left Loop, Right Loop, Left Split and Right Split).
If the test portrait belongs to the sub-class, its label is the same
as that of the father node of this sub-class note in Fig.6. The
third row of Fig. 9 shows that the multi-style classification
accuracy is improved by the weakly supervised clustering.
The classification performance (the areas under ROC curves)
is quite good using the relatively small training sample size.

Comparison with Previous Works. As shown in the
second and fourth rows of Fig.9, we compare our method
(21 contrast types) with previous methods on our dataset (also
using clustering for Rembrandt, Loop and Split). The low
level generic features proposed by Marchesotti et al. [9] are
designed for all kinds of images. However, the portrait lighting
is implicitly encoded in the generic features. Other features
proposed by Luo et al. [8] (human face combined features)
and Khan et al. [10] are designed for the portrait aesthetic
assessment, but are not designed specifically for the lighting
usage. Our method outperforms others (including using all
features proposed by Luo et al. [8]) in the classification
experiments of four artistic lighting styles (consideringthe
areas under ROC curves).

B. Quantitative Assessment Results

For the quantitative assessment task, training data with the
quality of photographs are necessary for fitting the regression
model (SectionV). We obtain the consensus quality scores
(i.e., winning probabilities against randomly chosen images)
with human experiments.
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Fig. 10. Goodness-of-fit visualization of the logistic regression for quality
assessment.

TABLE I
LOGISTICREGRESSIONCOEFFICIENTS.

Feature Est. Std.Err. z-score p-value

(I) −2.15 0.13 −17.14 < 2e− 16
F1 0.50 0.74 0.68 0.50
F2 0.42 0.67 0.64 0.53
F3 4.73 1.23 3.86 < 0.01
F4 −0.35 0.79 −0.45 0.65
F5 0.66 0.62 1.05 0.30
F6 0.42 0.74 0.57 0.57
F7 1.50 0.51 2.95 < 0.01
F8 8.20 0.88 9.34 < 2e− 16

Human Experiments. We randomly choose100 portraits
(either with or without artistic lighting style ) from our dataset
as the training examples. We also ask15 professional artists
from professional art studios and the department of fine arts
as test subjects to do the comparisons between photographs.

For eachI in the 100 training images, another100 random
imagesJ1, · · · ,J100 from the rest of the dataset are sampled
with replacement. Each of the100 pairs(I,J1), · · · , (I,J100)
is displayed to a random test subject, who then compare the
two images and report their relative rank order in the quality
of lighting. In this way, a total of10, 000 comparisons are
performed, and the numbers of wins and losses of the100
training images are obtained for fitting the prediction model
in SectionV. Here the replacement ensures the constant prob-
ability condition for the assumption of a binomial distribution
[34].

Regression.Most features have favorable smallp-values
in the logistic regression (TableI). Fig. 10 plots the fitted
scores vs. the scores obtained from human experiments (50
samples). Due to the small size of the training set and the
small number of Bernoulli trials, there is still a considerable
residual deviance in the fitting (null deviance:936.85 on 49
degrees of freedom, residual deviance:522.14 on 41 degrees
of freedom). Since no heteroskedasticity or non-normal effects
are noticed [34], we believe that our empirical definition for
the aesthetic quality and the experimental design should make
good sense.
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Fig. 11. Quantitative assessment results. The portraits are displayed with predicted quality scores, and higher scores indicate higher lighting quality.

Fig. 11 shows the portrait lighting quality predicted by our
regression model. The test portraits are not included in the
training portraits. Experimental result shows that our regres-
sion model can assess the portraits lighting quality as human
beings do. We use lighting contrast characteristic to predict
the portrait lighting quality in this paper. In the future work,
we will try to access portrait lighting quality by incorporating
the statistical prior obtained from millions of unlabeled images
(as in [37]).

C. Face Illumination Matching Results

Similar to [2], we test the face illumination matching in
the Yale Face database B and the Extension [38, 39], which
contain frontal face photos of 38 subjects under the same 64

lighting conditions (64 point light sources in 64 directions).
Due to the dense light directions of Yale database, even
humans cannot distinguish the illumination effects of two light
directions with small intersection angles. We thus also relax
the correct matching criterion, and set that if the same lighting
condition as that of query portrait is in the top 3 matched
results, we consider it as correct matching (Top 3 hit).

The accuracy rates are shown in Fig.12. We outperform
the FID defined in [2] with only 3 basic contrast types (about
16 per cent). And we substitute the 16 selected contrast types
with the 21 contrast types. The average accuracy rate is higher
using only the 16 selected contrast types (78.0%) than using
the whole 21 contrast types (77.6%). This can validates the
representativeness of the selected features.
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Fig. 12. Accuracy of face illumination matching on Yale Facedatabase. The distribution of all the 64 light sources is shown with each direction as a square.
The average accuracy of each direction is shown as the graylevel of the small squares. The whiter the squares are, the moreaccurate they are considered to be.
The light source directions are with respect to the camera axis, which is perpendicular to human faces for frontal view photos. The azimuth is the horizontal
angle, while the elevation is the vertical angle. We comparethe performances of using 3 basic contrast types used in [27], 21 and16 selected contrast types,
and the average accuracy rates are62.6%, 77.6% and78.0%, respectively.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we design a novel set of local lighting contrast
features (21 contrast types) to model various local lighting pat-
terns. Artistic lighting templates consisting of the locallighting
contrast features are learned from example portraits. Based on
the local lighting contrast features and the learned templates,
we make various analyses of artistic portrait lighting including:
portrait lighting classification, quantitative assessment and face
illumination matching.

The method in this paper is more suitable for front view
portraits. In our future work, we will collaborate with psy-
chologists to find the psychological explanation of our lighting
contrast features. We will extend the local contrast features to
side view portraits. Besides portrait images, portrait lighting in
videos are also significant for aesthetic feelings. The aesthetic
assessment of the dynamic lighting can be our future work.
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