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Learning Templates for Artistic Portrait
Lighting Analysis

Xiaowu Chen, Xin Jin, Hongyu Wu, and Qinping Zhao

Abstract—Lighting is a key factor in creating impressive
artistic portraits. In this paper, we propose to analyse potrait
lighting by learning templates of lighting styles. Inspired by
the experience of artists, we first define several novel feates
which describe the local contrasts in various face regionsThe
most informative features are then selected with a stepwise
feature pursuit algorithm to derive the templates of various
lighting styles. After that, the matching scores which measre
the similarity between a testing portrait and those templaes
are calculated for lighting style classification. Furthernore, we
train a regression model by the subjective scores and the faae
responses of a template to predict the score of a portrait
lighting quality. Based on the templates, a novel Face lllurimation
Descriptor (FID) is defined to measure the difference betwee
two portrait lightings. Experimental results show that the learned
templates can well describe the lighting styles, while therpposed
approach can assess the lighting quality of artistic portréts as
human being does.
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Index Terms—.Portrgit ITighting Analysi.s,. antrast Fealltu.re, Fig. 1. The face regions definition. (a) The artists’ commuaacfice to analyze
Template Learning, Lighting Style Classification, Quantitative portrait lighting quality. The face is coarsely divided dntegions L1]. (b)
Assessment, Face lllumination Matching. Inspired by the artists, we divide the face inité rectangular parts.

|. INTRODUCTION face regions to analyze portrait lighting. They firstly digithe
Lighting is one of the most important factors of portraitface coarsely int@x5 regions (Fig.1 (a)). Then, the shadow

Artists usually use professional lighting equipment inguo- @nd non-shadow areas in those regions, with their relative
ing artistic portraits. An ingenious lighting can highligthe 0cations, arearatios, etc. are used to assess the ligjualgy
shape of face and make the portraits more impressive adclassify the lighting styles: ThRembrandstyle is featured
interesting. In many applications such as image searchidg Y @ triangular highlight region below one of the eyes. The
face illumination transferd] 2, 3], it is of significance that the Paramountstyle has a butterfly shape for the shadow between

portraits can be searched by lighting, or lighting qualignc the nose and the mouth. Theop style is named after the

be automatically assessed. loop-shaped shadow below the nose. Bpdit style has half
Several algorithms related to lighting analysis are preglos ©f the face in the sha(_jow,Lﬂ, 12,13, 14
Environmental irradiance is estimated from images| 6, 7]. According to the artists’ experience, we propose to analyze

Portrait lighting is the product of lighting and facial geetry. the portrait lighting from the lighting effect in the locaide

It is impractical to analyze portrait lighting from envinmental "e€gion. The local lighting contrast features are inspirgd b

irradiance since recovering the facial geometry from insagél® Haar-like featureslp, 16, 17] used in face recognition.

is a difficult task. Various features are designed for theialis We divide the frontal face intd6 rectangular regions (Fig.

aesthetic quality assessmer®, B, 10]. Those features are 1 (b)). For each region, we define a set of local lighting

efficient for aesthetic quality analysis, but are not designcontrast features with the help of artists. In order to abtai

for portrait lighting. more local lighting contrast informgtion_, the local lighdi _
On the other hand, artists have rich experience in analyzifgntrast types are performed on various image channelg usin

portrait lighting. They often check the lighting effectslatal Various image statistics. The templates (F2y.are learned
by selecting the most informative features using a stepwise
The authors are with the State Key Laboratory of Virtual Real feature pursuit algorithmif]. The information gain of each
Technology and Systems, School of Computer Science andn&®wig, feature is calculated by a Iog-linear model.
Beihang University, Beijing 100191, China (e-mail: chen@#.edu.cn; - .
jinin@buaa.edu.cn: whyvrlab@buaa.edu.cn;  zhaogp@mima.edu.cn, The templates are further used to analyze portrait lighting
Corresponding authors: Xiaowu Chen and Hongyu Wu). For classification, we calculate the matching score between
Copyright (c) 2013 IEEE. Personal use of this material ismied. 5 testing portrait and a lighting template. If the matching
However, permission to use this material for any other psegomust be . . .
score is greater than a threshold, the testing portraitghot

obtained from the IEEE by sending a request to pubs-peroms@ieee.org. * > i ’ >HEE
is classified to that lighting style. For quantitative assesnt,
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Xing et al.[L9] estimated the dynamic outdoor illumination
== of an video sequence. The vertical and horizontal plans in
!‘_ the video are interactively selected to recover the sun and
- sky light in real time. Chen et al2[)] used the known scene

]:.[ geometry and shading information to estimate the illuniamat

v A sparse set of 3D surfaces is selected by normal and semantic
constraints. The coarse shading image of those 3D surfaces,
together with the 3D surfaces, are used for illumination
estimation.

Panagopoulos et al.2]] jointly recovered the illumina-
tion environment and estimate the cast shadows in a scene
from a single image. A higher-order Markov Random Field
(MRF) illumination model was used, which combines low-
level shadow evidence with high-level prior knowledge foe t
Fig. 2. The templates of four lighting styles. The left shopart of the joint estimation of cast she}dows and illumination enviremm .
training portraits. The right is the learned templates ahelighting style. Zhu et al. PZ recognized shadows of monochromatic

natural images. Both shadow-variant and shadow-invariant
cues from illumination, textural and odd order derivative a
we first select a fixed number of portraits with lighting qtiali used to train a classifier from a decision tree, and are iatedr
scores graded by artists and feature responses of a temfplatato a conditional random Field. Shadowed areas of an image
regression model is then trained by the lighting qualityrecocan be identified using proposed monochromatic cues.
and the feature responses of a template to predict therdighti Johnson et al.§] used both model-independent methods
quality of a testing portrait. For face illumination matefj (cast-shadow analysis, occluding-contour analysis) aodet
we select the local lighting contrast features which canl weédased methods (physical models of the eyes etc.) to infer the
describe the local contrast to form the FID for measuring thighting direction. A Bayesian evidence integration scleem
lighting difference between two portraits. was used for the two disparate sources of information.

The contributions of this paper include: (1) learning artis Nishino et al. , 23] estimated the lighting condition from
tic lighting templates for artistic portraits through a sdt eyes. The eye was treated as a natural light probe, and an
local lighting contrast features, (2) portrait lightingadysis environment map of the scene was computed from the image.
including lighting style classification and quantitativghiting The tasks such as inserting virtual objects into an image fa
assessment using learned artistic lighting templates facel relighting, lighting robust face recognition benefits frahe
illumination matching using local lighting contrast feets.  environment map from the eye.

The remainder of this paper is organized as follows: we Spherical harmonic2H] provided a way to approximate the
describe related work in Sectiolh. The design of lighting environment map by spherical harmonic basis functions. Wen
contrast features is described in Sectltinh The learning of etal. [/] used a linear combination of spherical harmonic basis
lighting templates is described in Sectidd. We analyze to approximate the environment map for any given image of
portrait lighting in SectionV. The experimental results area face, and Bitouk et al.2p] used the spherical harmonics

shown and discussed in Sectivih. Finally, we conclude our approximation to adjust lighting for face image swapping.
paper with discussions in Sectiofil . Han et al. 6] used spherical harmonics lighting model for

improved face recognition performance.

Those works focus on environmental irradiance estimation,
are not suitable for our task. We analyse the portrait liggti

In this paper, we focus on artistic portrait lighting anagys from the local contrast feature of 2D images to avoid environ
including lighting style classification and quantitativesass- mental irradiance and facial geometry estimation from iesag
ment. Roughly, the methods related to our topic can be divide
into two aspects: image-based lighting analysis and phdt Photo Aesthetic Assessment
aesthetic assessment. Luo el al. B] collected 17,613 photos with manually
labelled ground truth. They divided the photos into seven
categories based on the photo contents, and developed a set
of subject area extraction methods and visual features;twhi

Lalonde et al. 4] estimated outdoor illumination from only are specially designed for different categories. Whichatlye
a single outdoor image. They used a dataset of 6 milliamproves photo quality assessment performance.
images to train the illumination inference model, and eatam  Another line of research in the field of aesthetic quality
a sun and sky dome model that is especially for outdoassessment is by using generic features. Marchesotti [&g] al.
images. The three most evident appearance cues (i.e. pheposed to use generic image descriptors to assess &esthet
sky, shadows on the ground and the varied intensities of theality of a photo. The generic image descriptors which
vertical surfaces to estimate the direction of light) arediy aggregate the statistics computed from low-level locaiifiess,
employed to estimate the illumination in a scene. implicitly encode the photo aesthetic properties.
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II. RELATED WORK

A. Image-based Lighting Analysis
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P, (b) local patch smples

¢) local patch samples classification by artists

Fig. 3. Local lighting contrast type design with the help difists. We first collect a dataset of artist lighting potsaiThen, the portraits are divided into
local patches (the patches of faces are regularized to eguanally, the local patches are classified by artists &edighting contrast types are derived from
the local patches.

Khan et al. 0] developed a small set of classificatiorhave the most potential to be selected as the representative
features to evaluate the visual aesthetic in photograptiic plocal lighting patterns of artistic portrait lighting (Ei§ (d)).
traitures. They proposed features for spatial compos#ioth ~ According to the local lighting contrast type, the rectalagu
highlight and shadow composition. Their lighting featuresegion is divided into two subregiond and B (black and
are computed in the global face, or cannot well descrilvghite areas). In Sectioiwl, we will show that the21 local
the complex artistic lighting effectsand find informatiaedl contrast types outperform th& ones in portrait lighting
lighting patterns in portraits . analysis.

Those features are efficient in aesthetic quality analysis,  Target channel C of the image Our 8 adopted channels
are not designed for portrait lighting. This paper proposesinclude the graylevel, thes channelsL, a and b in the
set of local contrast features specifically for portraibtigg. CIE 1976 *, a*, b*) color space (L differs slightly from
graylevel although the 2 channels are heavily correlated ),
and the hue and saturation channels in the HSV color space.
In order to capture the effect of staggered highlight under

The local lighting contrast features are designed to captWidelight, we also involve the channel of gradients in the
the local lighting contrast characteristics. Each featéje graylevel channel, as well as an edge channel including all
includes 4 dimensionsl, : {E, H,C, S}, whereE, H,C,S  edge pixels generated by a Canny edge detector using OpenCV
are defined as: library with default parameters. (Canny et &8], OpenCV

Rectangular region £ on the image lattice As shown in js the Open Source Computer Vision library, opencv.org).

Fig. 1, we divide the area of a frontal face int6 rectangular  Target statistic 5 of the image We use3 types of statistics:
parts: nose, left eye, right eye, left eyebrow, right ey@bromean valug:, histogrami, and density (proportion of edge
mouth, region between mouth and nose, forehead, left gpels) which is specially designed for the edge channel.
cheek, right up cheek, left down cheek, right down cheek, The feature response of local contrast featutetween the

region left to left eye, region right to right eye, and chin. 4,0 sub-regionsd and B of imageI on channel” is defined
Local contrast type H. In our previous work 27], we gg

adopted3 local lighting contrast types to approximate some

local lighting patterns of relative brightness and darknés

order to describe the local lighting contrast more pregjseé re(l) =

define a new set of local lighting contrast types with the help [pa — Pl

of artists. where, JS(-||-) denotes the discrete Jensen-Shannon diver-
Fig. 3 shows the design of local lighting contrast types. Wgence p9].

collected 350 example portraits with artistic lighting lsty

(Fig. 3 (a)). We first divided all the 350 example portraits of

our database into local patches, and the local patches with n

obvious shadow or highlight were deleted (Fiy(b)). Then, The lighting template consists of a set of local lighting con

artists were invited to classify the local patches accgrdn trast features. We learn a template for one lighting stylagus

the local lighting effect, and divide the local patches idtb a stepwise feature pursuit algorithm. The learning albarit

kinds. For each kind of local patch, the artists designedisbuilt on a log-linear model of the probability distriboitis

contrast type to represent the lighting contrast propdfig.( of the lighting style, with the feature responses as factors

3 (c)). In order to cover more local lighting effect, the first 5 Observing that the rectangular regions have no or vere littl

contrast types were extended to 15 contrast types by movioggerlap with each other, we assume independence of features

the split line. Finally, we go®1 local contrast types which in different rectangular regions and model the distribugiof

IIl. L OCAL LIGHTING CONTRAST FEATURES

lpa —pp| if Sis mean
JS(hallhp) if S is histogram 1)
if S is density,C is edge

IV. LEARNING ARTISTIC LIGHTING TEMPLATES
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o) stepwise feature pursuit algorithi®1, 18] to select one feature

s | at each step to construgtI).
REHRD) L AhRE)R]
/ . - - Algorithm 1 Stepwise pursuit for lighting contrast features
7 - \"«:’7{ Input:
: v, 4 Qp, positive samplest) N, negative samples;
. . Feo : {Fy,---, F}, candidate feature set;
s | Output:
KL((RIAR)) a T the learned lighting templajte; _ _
& | . Compute feature responses and information gain:
k
&7 1: for each feature if do
2: Compute its feature response on each imagéin
andQpy by 1;
Fig. 4. Information gain of a feature. For featufg in the candidate feature 3 Compute itsh andlog z by 4;
set, its responseRkP and R}f are calculated for all images @1p andQ y, 4: end for

and two histograma (R!) andh(RL) are obtained for the positive examples N
and negative examples, respectively. The KL divergencevemst the two Pursuit lighting contrast features:

histograms approximates the information gainfGf on our dataset. 1 Let Iighting templateT cptel

2: while t < Thresh; do
Select the max-gain featur§,, according to3;
T(—F(t), t«+t+1,
Delete F{;) and features in the same region bf;
from F¢;
6: end while
d: return T,

portrait images of the same artistic style in a generatige lo s
linear form. With the set of portrait imagésr with a lighting :
style P (positive examples), and against the portrait imageéz“
Qn with other lighting styles (negative examples, including
the portrait images with no lighting effect on their facesvy

are able to pursue the most representative features with th

weight parameters. We would like to build a lighting temeplat Gi did ¢ beai ith
for Qp againstQy, as well as a probability distribution lven a candidate feature set, we begin with an empty

upon this template. The template is a group of featuré%r‘npl""te corresponding to the negative examples disiibut
characterizing the portrait lighting style. po(I) = ¢(I) at step0. Then at each step we choose the

In this work, Qp can include all the portraits with artistic max-gain feature
lighting styles, whileQ2» contain the portraits without obvious Fly) = argmax KL (p (re (D) |pe—1(r(T)))
artistic lighting styles. A common template for all the stit N i
lighting styles can be learnefl,» can also include a subset of ~argmax KL (pe (i (D))lla(r& (L)) 3)
artistic lighting styles, such aembrandt, Paramount, Loop, ~ arg max KL(h(RD)||W(RY)).
and Split The template is specific for that artistic lighting B
style. For example, wheflp includes theRembrandtighting On our datasetKL(-||-) is the Kullback-Leibler diver-
style, Q2 includes all the other style®gramount, Loop, Split gence, andh(-) denotes the histograms over a set of local
and daily photos. Then, the learned template is specific fighting contrast feature response3l and R denote the

Rembrandt responses of lighting contrast featuteof positive and neg-
Suppose the template is composed of a set of featusdive samples respectively (Fig). The second approxima-

{Fy, -, Fk}, a probabilistic model for each imadec Qp tion arg maxp, KL(p:(rx(I))||¢(rx(I))) applies empirical es-

can be defined in a log-linear forn3(Q, 19| timates of marginal probabilities with instances in theadat.

For the first approximation, where we assume; (r (I)) ~
q(ri(I)), to be feasible, we apply local inhibition in the
template learning process to reduce the correlations among
the selected features in the pursuit steps. Noticing the fac
where,g(I) is the null distribution ofl without any knowledge that the rectangular regions have no or very little overléph w
of the feature responses, \; is the weight parameter, andeach other, we simply assume independence of features in
zr Is normalizing constant for the factors. In our case, we usiéferent rectangular regions, and use the inhibitiontetna
the template to describe the new information of photographsthat selects only one feature from each rectangular patteof t
Q2p compared with that iy, and leave the rest informationface. Meanwhile, for step, the parameters ;) and z) can
in ¢(I). In this way,q(I) models the negative samples. be computed by solving the system

We select an informative subset of the features for the 1
template, rather than using the whole feature set, for two  Eq | ——exp{Aw)r (D}re (D] = Ep [ (D]
reasons: (1) features tend to be correlated, and (2) werprefe ®)
a simple template for both capability of generalization and #(1) = Eqlexp{Awr (1)}]
computational efficiency. Since selecting an optimal subsgith E,[-] ~ Meang,, (-) andE,,[-] =~ Meang,.(-) as empiri-
of features simultaneously is a non-trivial task, we adoptaal estimates according to our dataset. Algorithmescribes

K

o =am ] j—kexp{man , @

k=1

;4
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Fig. 5. The learned artistic lighting templates. The first ie the common template of the whole artistic lighting stated the template dParamountstyle.

Paramountstyle has no sub-classes according to key lighting direstidhe second to the fourth rows show the learned templatethé other three typical
artistic lighting styles. In each row, from the left to thght are the common template of this style, the samples ofstiyle, and the two templates of the

two sub-classes. All templates are shown with ranks markedolbred boundaries corresponding to the legend.



IEEE TRANSACTIONS ON IMAGE PROCESSING-SUBMISSION, NOVENHR 2014 6

the stepwise pursuit algorithm for lighting contrast featu Artistic Lighting
In order to keep the independence between the local contrast 2
features of the template, we find a most informative featare f

every face region, so that théhresh, is equal to the amount

of face region.

Fig. 5 displays the learned lighting templates (For clarity, —

the top8 local contrast features of the template are shown).

More discriminative local contrast types are selected than

just left-vs-right, top-vs-bottom, and center-vs-pegph in L

[27]. For example, the triangle contrast type learned in t
Right Rembrandstyle captures the triangle light well. The
Paramountemplate has the top triangle contrast type betwe®
the nose and the mouth. This is the most informative featu-r;'\L = R
the Paramountstyle has.

The results show that the left a_nd the right templates P|fg 6. Weakly supervised clustering. All the artistic ligly styles are
each style are not strictly symmetrical. For example the letiivided into four typical artistic lighting styles. We makesakly supervised
split template is not a mirrored version of right-split telatp. ~clustering within each style. Each style RembrandtLoop and Split can be
Because the training images of the left and the right suﬁ)‘étsorr:‘oats'ﬁiuysﬂ't‘)’_'gg‘;s'géobg‘;ussibiﬁgiseesl? 'He.ft and Rigftte paramount

. ) y lighting direstialways above its
classes are not symmetrical due to the asymmetries of humgagect.
faces and the key light direction. Besides, individual etif
ences and artistic creations of different artists also geae
the non-symmetrical sub-classes.

The learned templates correspond to the studio lightingThis follows a probability ratio test formulation. If the
well. Most of the selected features are of the generalizethtching score is greater than a learned threshold comespo
left-vs-right spatial type, which matches the common ligdpt ing to a certain significance level (e.g., the equal erroe rat
strategies for portrait photography in studios as phofolgges (EER) threshold), the test photo is classified as lightiryiest
usually change the directions of light in the horizontal dim P; otherwise, it is classified as other lighting style.

sion. The parts for the nose and the area between the mOUttllhe template learned by portraits with artistic lighting

and the nose are the top significant areas, which make SeNse. i that without artistic lighting can be used to clyssi

because thesg two parts are relatively cc_>mp|ex N geo m?g&est portrait as artist lighting or not. We can also leam th
and have various appearances under different |IIum|nat|?en

conditions. It is worth noticing that all the color featurase mplate by the portraits with one lighting style against th

ignored by the template learning process. Our dataset imm%ortralts with other lighting styles and the portraits with

. rtistic lighting. The template learned for each lightirtgles
only 63 monochrome portraits, and the monochrome portraits . . .o

; . : can be used to classify a test portrait as that lighting style
make up only a small proportion (850 portraits). This proves

that color is not a distinctive lighting contrast feature.

(" Rembrandt Paramount

=
—d

Left Right

We focus on 4 popular artistic lighting stylegaramount
RembrandtLoop and Split We invite the artists to divide the

portraits with artist lighting in our dataset into those yes.
With the learned templates of the artistic lighting styles,

we make analysis portrait lighting in this section, inchugli
lighting styles classification, quantitative assessmamd, face
illumination matching.

V. PORTRAIT LIGHTING ANALYSIS

Our dataset contains between-class and within-class vari-
ations. The within-class variation is mainly caused by the
key lighting direction in each artistic lighting style. Weake
weakly supervised clusterin@®?] and the cluster adopted in
our paper is APCluste3[], and the face illumination distance

is defined in SectioriV. We empirically set the preference
A. Classification parameter of APCluster as 4 in our experiments.

The templatel’s for artistic lighting styleA is learned by ~ We learn two artistic lighting templates per style to acdoun
all the portraits with artistic lighting stylel against portraits for more within-class variation through weakly supervised
with other lighting style. It can be used for lighting styleclustering. Each style oRembrandtLoop and Split can be
classification. Given an input portrait phdtowe can calculate divided into two sub-classes: Left and Right, which means

a template matching score witfiy by the key light comes from left and right respectively. The
paramounthas no such sub-classes because the key light-
. p(I) ing direction is always above the subject. Then we obtain
MatchingScore(I) = 10%@ 3x 241 =7 templates for3 x 24+ 1 = 7 styles (Fig.6).

K (5) After that we make one-to-all classification in our expetnitse
_ Z(/\ (D) — log zx) as what we have done in our multi-style classification. Big.
— Wk m (the third row) shows that the classification performance is
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Fig. 7. Definition of FID. (a) The portrait photo with facisaidmarks, (b)

The facial mask according to (a), (c) The 16 selected can s Fig. 8. Classification accuracy with the number of local castt features.

The accuracy of the classification of all the artistic liglgtistyles is tested
using the local contrast features designed in this paper.

improved by the weakly supervised clustering.
- and 16 contrast types are selected (Figc)). The L channel
B. Quantitative Assessment and the mean statistic have the highest accumulated KL

In addition to classification, it is usually more useful tova divergence, meaning that the selected 16 contrast types,
a reasonable quantitative assessment of a portrait lightza channel and mean statistic can describe the charactsreitic

age. This can be achieved by extending our learning algoritdighting contrast .

to a regression framework. According to the 16 selected local contrast types, the non-
In an empirical manner, we define the lighting quality of &gular region is divided into two non-regular subregiotts

portrait photograpH as the probability that it is better than and B*. In order to model the lighting direction, we do not

another randomly chosen portrait photograhmamely, use the absolute value of the difference,

p = Ey ) [1(I wins against)], (6) (1) = pas — pip=. (8)

where, f is the distribution of all portrait images, and-) is The FID of portrait photd is defined as a set of the local
the indicator function. To predict the scope we randomly contrast feature responseS(I) between the two subregions
choose a fixed number of photographs to compare wifh of the 16 non-regular regions oh channel using the mean
then winning number ofl should follow a binomial distri- statistic, which is a6 x 16 d vector.

bution binom(n, p). We do such comparison experiments on Face lllumination Distance. We define the illumination
example portraits and obtain their scores. We can then a&imdistance between two portrait imagksandI, by FID as

the effects of the features on the score using logistic exjpa

[34] by fitting the model D(I;,Ip) = \/2256 *(Iy) — 1 (I2))2. 9)
K
1Og Z (Aere(I) — log 2x) As an application of our lighting contrast features and
et the FID, we use the face illumination distance to match the
portrait with the most similar illumination effects as tieosf
=)o+ Z Nere (1), the query one.
and this model is able to output a scagrec (0,1) for the VI. EXPERIMENTS

quality of test photographs. We validate our template and lighting contrast features in

o ) the aspect of classification, quantitative assessment acal f

C. Face lllumination Matching illumination matching. To the best of our knowledge, there a

In order to quantify the illumination difference betweemo open data sets for our experiment. Therefore, we set up our
two portrait images, we define a nefwace lllumination own dataset. We collect50 example portraits with artistic
Descriptor (FID) based on the local lighting contrast featuredighting styles from 3 sources: (1) masterpieces of pdrtrai
We extend the rectangle region to non-regular region withpdnotography from famous photographers (e.g., Yousuf Karsh
mask of each parts such as forehead, nose, eyebrows, moudingpld Newman), (2) collections from professional photog-
etc. (Fig.7 (b)). In our previous workJ], the FID contains raphy websites (e.g., photo.net, portrait-photos.orgyl €3)
only 3 contrast types (left-vs-right, top-vs-bottom, amhier- scanned copies from professional portrait photographk®oo
vs-periphery). In this paper, we use the more informativé afiocusing on lighting 11, 12, 13, 14].
a new set of lighting contrast features. The 500 portraits with no obvious lighting effect for com-

In the templates learning process, we accumulate the Klarison are obtained from two main sources ( Most of them
divergence betweeh(Ry(P)) andh(Ry(N)) for every local are daily portraits ): (1) popular photo hosting websiteg.(e
contrast type, target channel and target statistics. 5Srasint flickr.com), and (2) image search engines’ results for the
types with nearly zero accumulated KL divergence are ighore&keywords “face” and “daily life” (e.g., images.google.chm
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Fig. 9. In the first and third rows, we show the average acgurates and ROC curves of 5 times 5 folds cross validation -foral classification).
The 3 candidatesand 21 candidatesmean the classification results using 3 basic contrast tgpd®7] and the proposed 21 new contrast types. Bhe
candidates+clusteringand21 candidates+clusteringnean the classification results after weakly supervisestaling, which are all higher than those without
clustering. All the highest accuracy rates are2ih candidates+clusteringln the second and fourth rows, we show the ROC curves of Sstintolds cross
validation in the classification of artistic lighting, coamed with the methods in Marchesotti et &],[Khan et al. L0], Luo et al. human §] (human face
combined features) and Luo et aB] [(all features).
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We try to randomize irrelevant factors by spanning over 1r .
various poses, ethnic groups, etc. All images in our dataset e
are aligned using AAM 35| to a standard frontal face before I A
running our other tasks. Due to the shadow effects, the AAM .
sometimes cannot get the accurate position of facial featur . R o o
points and some manual corrections are thus needed. The face
image with inaccurate feature points can be detected3bly [
in the future work.

The lighting template consists of lighting contrast featur - °,* o0
Fig. 8 shows the lighting classification accuracy with different H o .
Thresh;. The classification accuracy can reag®h0% with
only one lighting contrast feature, demonstrating goodesor o o°
spondence between our template and the experience ofartist .
who usually judge the lighting style by a small number of face Oy 02 0.4 06 08 1
regions. Score from Human Experiment

Which shows that our template corresponds to the artist
experience well: the artists usually judge the lightindestyy Fig. 10. Goodness-of-fit visualization of the logistic reggion for quality
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. assessment.
small number of face regions.
TABLE |
A. Classification Results LOGISTICREGRESSIONCOEFFICIENTS
Fig. 9 shows our clagsification_ performance. W_e compare Feature Est SET  s-score pvalue
the performance of using candidate features with 3 basic :
. (I —2.15 013 —17.14 <2e—16
contrast types (left-vs-right, top-vs-bottom, and center Py 0.50 0.74 0.68 0.50
periphery) in R7] and with 21 contrast types designed in Fy 0.42 0.67 0.64 0.53
this work. As shown by the ROC curves in the first row B 4.73 1.23 3.86 <0.01
f Fig. 9, the performance with 21 contrast types is better £ —0a 019 040 009
or Fig. 9, thé p ; yp Fs 0.66 0.62 1.05 0.30
than that with the 3 basic contrast types. Using the weakly Fg 0.42 0.74 0.57 0.57
supervised clustering, we obtalhx 2 + 1 = 7 templates Iy 1.50 0.51 2.95 < 0.01
Fy 8.20 0.88 9.34 <2 —16

for 3 x 2+ 1 = 7 styles (eft Rembrandt, Right Rembrandt,
Paramount, Left Loop, Right Loop, Left Split and Right $plit
If the test portrait belongs to the sub-class, its label ésshme

as that of the father node of this sub-class note in 6ighe (either with or without artistic lighting style ) from our tieset

third row of Fig. 9 shows that the multi-style cla53|f|cat|0nas the training examples. We also ask professional artists

accuracy 15 '”?pro"ed by the weakly supervised clustermg. professional art studios and the department of fine arts
The classification performance (the areas under ROC curves

. . . . L ._as’test subjects to do the comparisons between photographs.
is quite good using the relatively small training sampleesiz . Lo
: . . . For eachl in the 100 training images, anothdi00 random
Comparison with Previous Works. As shown in the

. imagesJy, - -- ,J190 from the rest of the dataset are sampled
second and fourth rows of Fi@, we compare our method_ . :
. . ith replacement. Each of th0 pairs(I,J1), - , (I, J100)
(21 contrast types) with previous methods on our datassd (al_ . .
Is displayed to a random test subject, who then compare the

using clustering for Rembrandt, Loop and Split). The low . ) . .
) . two images and report their relative rank order in the qualit
level generic features proposed by Marchesotti et @lafe S . .
i . : o of lighting. In this way, a total ofl0,000 comparisons are
designed for all kinds of images. However, the portraittiig .
C Y ) ; performed, and the numbers of wins and losses of i@
is implicitly encoded in the generic features. Other feagur, ~. - : i .
. training images are obtained for fitting the prediction mode
proposed by Luo et al.8] (human face combined features) f
: . “In SectionV. Here the replacement ensures the constant prob-
and Khan et al. 0] are designed for the portrait aesthetic, .. . . i S
. o .~ ability condition for the assumption of a binomial distrilmn
assessment, but are not designed specifically for the tighti 4
usage. Our method outperforms others (including using Jiﬁ R.e ression. Most features have favorable smahivalues
features proposed by Luo et alg])] in the classification 9 '

experiments of four artistic lighting styles (consideritige in the logistic regression ('_I'abIB. Fig. 10 plots the_ﬁtted
scores vs. the scores obtained from human experiments (50
areas under ROC curves).

samples). Due to the small size of the training set and the
o small number of Bernoulli trials, there is still a considaea
B. Quantitative Assessment Results residual deviance in the fitting (null devianc#36.85 on 49

For the quantitative assessment task, training data wéh ttlegrees of freedom, residual devian22.14 on 41 degrees
quality of photographs are necessary for fitting the regwass of freedom). Since no heteroskedasticity or non-normalasf
model (SectionV). We obtain the consensus quality scoreare noticed 34], we believe that our empirical definition for
(i.e., winning probabilities against randomly chosen iegg the aesthetic quality and the experimental design shouldema
with human experiments. good sense.

Human Experiments. We randomly choos&00 portraits
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Fig. 11. Quantitative assessment results. The portragtgdiaplayed with predicted quality scores, and higher scordicate higher lighting quality.

Fig. 11 shows the portrait lighting quality predicted by outlighting conditions (64 point light sources in 64 direct®)n
regression model. The test portraits are not included in tBeie to the dense light directions of Yale database, even
training portraits. Experimental result shows that oureésg humans cannot distinguish the illumination effects of twgit
sion model can assess the portraits lighting quality as humdirections with small intersection angles. We thus alsaxel
beings do. We use lighting contrast characteristic to ptedihe correct matching criterion, and set that if the sameiligh
the portrait lighting quality in this paper. In the future tkp condition as that of query portrait is in the top 3 matched
we will try to access portrait lighting quality by incorpdirsg results, we consider it as correct matching (Top 3 hit).

the statistical prior obtained from millions of unlabeledsiges .
(as in B7)). The accuracy rates are shown in Fig2. We outperform

the FID defined in 2] with only 3 basic contrast types (about
16 per cent). And we substitute the 16 selected contrasstype
with the 21 contrast types. The average accuracy rate ighigh

Similar to [2], we test the face illumination matching inusing only the 16 selected contrast typ&8.(%) than using
the Yale Face database B and the Extensi&8) B9, which the whole 21 contrast type§1.6%). This can validates the
contain frontal face photos of 38 subjects under the same @&presentativeness of the selected features.

C. Face lllumination Matching Results
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Using 3 basic Contrast Types
Average Accurate Rate: 62.6%

Using 21 Contrast Types
Average Accurate Rate: 77.6%

11

Using 16 selected Contrast Types
Average Accurate Rate: 78.0%
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Fig. 12. Accuracy of face illumination matching on Yale Fatsabase. The distribution of all the 64 light sources issshwith each direction as a square.
The average accuracy of each direction is shown as the gehydéthe small squares. The whiter the squares are, the avotgate they are considered to be.
The light source directions are with respect to the cameig ahich is perpendicular to human faces for frontal vievotols. The azimuth is the horizontal
angle, while the elevation is the vertical angle. We comjheeperformances of using 3 basic contrast types used7in £1 and 16 selected contrast types,

and the average accuracy rates é2e6%, 77.6% and 78.0%, respectively.

VIl. CONCLUSION AND FUTURE WORK

In this paper, we design a novel set of local lighting coritras

features (21 contrast types) to model various local lightiat-
terns. Artistic lighting templates consisting of the lokghting
contrast features are learned from example portraits.dase

the local lighting contrast features and the learned tetepla

we make various analyses of artistic portrait lighting urtthg:
portrait lighting classification, quantitative assesstraad face
illumination matching.

The method in this paper is more suitable for front view
portraits. In our future work, we will collaborate with psy-

chologists to find the psychological explanation of our tigh
contrast features. We will extend the local contrast fezsuo
side view portraits. Besides portrait images, portrattiigg in
videos are also significant for aesthetic feelings. Thehadist

assessment of the dynamic lighting can be our future work.
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